一个四边形最多有3个钝角,因为四边形的内角之和为360°,如果有两个钝角,那么两个钝角之和就大于180°小于360°,如果有三个钝角,那么这三个钝角之和就大于270°小于360°,满足四边形的内角之和为360°,如果有四个钝角,那么这四个钝角之和就大于,不成立,所以一个四边形最多有三个钝角。
什么是四边形
由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
常见的四边形有哪些
1、平行四边形
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
2、长方形
长方形也叫矩形,是一种平面图形,是有一个角是直角的平行四边形。长方形也定义为四个角都是直角的平行四边形。正方形是四条边长度都相等的特殊长方形。
长方形的性质为:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
3、正方形
正方形,是特殊的平行四边形之一。即有一组邻边相等,并且有一个角是直角的平行四边形称为正方形,又称正四边形。
正方形,具有矩形和菱形的全部特性。
4、梯形
梯形是只有一组对边平行的四边形。平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
5、菱形
菱形是特殊的平行四边形之一。有一组邻边相等的平行四边形称为菱形。如右图,在平行四边形ABCD中,若AB=BC,则称这个平行四边形ABCD是菱形,记作◇ABCD,读作菱形ABCD。
钝角的范围是多少度
钝角的范围:90°<钝角<180°。钝角大于直角(90°)小于平角(180°)的角叫作钝角。钝角是大于90度小于180度的角,钝角是由两条射线构成的。钝角是劣角的一种。
钝角一定是第二象限角,第二象限角不一定是钝角。钝角的三角函数值中,正弦值(sin)是正值,余弦值(cos)、正切值(tan)、余切值(cot)是负值。
copyright © 2015-2024 All Right Reserved 中学生必备网 版权所有 豫ICP备15030198号-47
免责声明:本站部分内容来源于网络及网友投稿,如果您发现不合适的内容,请联系我们进行处理,谢谢合作!