当前位置: 首页  >  知识  >  一个函数的反函数怎么表示

一个函数的反函数怎么表示

2023-10-07 16:55 732浏览

一个函数的反函数表示为:y=f-1(x),存在反函数(默认为单值函数)的条件是原函数必须是一一对应的,最具有代表性的反函数就是对数函数与指数函数。

相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。若一函数有反函数,此函数便称为可逆的。

反函数的定义是什么样的

一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣¹(x)。反函数y=f﹣¹(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标“-1”指的并不是幂。

反函数的性质有哪些

1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;

2、一个函数与它的反函数在相应区间上单调性一致;

3、大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

4、一段连续的函数的单调性在对应区间内具有一致性;

5、严增(减)的函数一定有严格增(减)的反函数;

6、反函数是相互的且具有唯一性;

7、定义域、值域相反对应法则互逆(三反);

8、反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f'y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I}内也可导,且:dy/dx=1/dx/dy;

9、y=x的反函数是它本身。