当前位置: 首页  >  学习  >  初二一次函数解题技巧

初二一次函数解题技巧

2023-11-14 17:02 1324浏览

初中数学孩子开始接触函数,而函数作为建立整个“数学大厦”的基础,学好函数对于以后的学习过程是十分重要的,但是很多孩子在学习的过程中,对于这部分知识难以理解,导致学习成绩也不是十分理想,那么初二一次函数解题技巧都有哪些呢?

初二一次函数解题技巧

1、待定系数法

所谓待定系数法,是指先设待求直线方程或函数表达式,含有待定系数,再根据条件列出方程或方程组,求出待定系数,从而得到所求函数表达式的方法。

2、平移法

一次函数无论是左右平移,还是上下平移,平移前后的两条直线始终保持平行,斜率不变,也即K值不会发生改变。

3、数形结合思想

正比例函数和一次函数的解析式一定要记清楚,而这部分的内容一定要会反映在直角坐标系中,学会通过直角坐标系观察一次函数的k,b。同时能够通过k,b的取值,快速确定函数的图像,确定图像之后,函数的性质就非常的简单了。

4、课前预习

不管是初中还是高中,我们学习法的第一要点都是课前预习。因为提前看一遍要学的内容,如果遇到不会的,那么第二天上课就可以认真听老师来讲,还听不懂就可以直接提问了。这是一个提高学习效率最直接的方法。

5、反复检查

检查自己数学学习成果的同时,也能够做到巩固知识点的作用。从而能更有效更快速地提高数学学习成绩,也能更好的养成自主学习的好习惯。

6、积极“想”的习惯

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

7、培养逻辑能力

学生需要能从已知条件得到结论,需要一步步推理得出来,这一点我们大部分中小学教学做得都不好。为了应试并且快速见效,学校让大家对解题方法死记硬背,忽视了背后的逻辑性。而遇到所学的解题技巧没有涵盖的所谓难题,当然就不会做了。

8、多看一些例题

可以在看例题过程中,将头脑中已有概念具体化,使对知识理解更深刻,更透彻,由于老师补充例题十分有限,所以我们还应自己找一些来看,看例题。

初二数学一次函数难吗

初二是整个初中学习阶段的重要节点,在初二孩子要学习很多中考知识点,在这个过程中孩子可能会遇到很多困难。比如数学中的一次函数,很多孩子刚接触它,都感觉很困惑,不知道该怎么学习,虽然它是有一定难度的,但在孩子的承受范围之内,孩子要把公式基础掌握好,多做题,学会举一反三。

初二数学一次函数难吗

有些难度。函数是八年级数学新接触的一个概念,很多同学们不能很好的理解函数的本质,因此感觉函数非常的抽象。和以前很多年学习的数学都很不一样,特别是函数压轴题,要涉及的知识、方法太多太多。而且它的题型很复杂,一般都是数形结合,要分析很多种条件,才有可能的正确答案。

初二提高数学的方法

1、多做练习题

初二要想提高数学成绩一定要多做练习题,多做一些基础性的问题,可以起到提高解决问题能力的作用。在解决问题的过程中,要掌握一个原则:掌握解决问题的技巧,不盲目训练,不钻牛角尖。在解决问题的过程中,要更加注重解决问题的思路、方法和技巧,掌握解决问题的思路,总结解决问题的技巧。

2、主动预习

预习是主动获取新知识的过程,有助于调动学习数学积极主动性,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

3、善于总结模型

善于总结,这才能从根本上去掌握几何题的做法。要研究不同的题型,使用不同的辅助线。而做辅助线的方法要仔细地研究。在这个时候多花一些时间是值得的。因为前面的全等的辅助线的方法,和后面初三要学的相似。只有在初二时将全懂的知识学的特别透彻,将来在初三学相似的时候就会比较容易了。

4、及时复习

这是初二高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对数学基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由懂到会。

5、注重考试经验的培养

有些同学平时成绩很好,上课老师一提问,什么都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不好,二是,考试时间紧,总是不能在规定的时间内完成。每次考试,大家都要寻找一种,适合自己的调整方法,久而久之,逐步适应考试节奏。

初二数学对一些基础比较差的孩子来说,会很困难,可是这是学习数学所要经历的。孩子在学习的过程中,遇到不会的题,不懂的概念,要试着自己分析,实在不会,再去寻找老师、同学的帮助,坚持把不会的知识都弄明白,数学知识才算是学会了。

初二不等式的解题方法与技巧

不等式是初二考试中的一个重点,也是一些孩子认为的难点。想要学好这个章节,孩子们在学习的时候,不仅要掌握基础知识,弄明白学习中的重难点,更要掌握初二不等式的解题方法与技巧,只有二者相结合,做到全面了解,这样才能在考试中才会临危不乱,取的好成绩。

初二不等式的解题方法与技巧

1、解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:分类讨论法、零点分段讨论法、两边平方法、几何意义法、待定系数法。

2、所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

初二数学应该怎么学

1、理解和弄懂所学的数学知识,知其然并知其所以然

学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些新的解法或产生新的认识等。

2、一次函数

一次函数不仅是初二的重点。也是整个初中学习的重点。尤其是在最后的压轴题目中。对一次函数应用的灵活度要求极高。因为是在二次函数背景下考的一次函数为主要内容。所以我们可以说初三的压轴题的最后一个函数问题本质上考的是一次函数。

3、学生听课要处理好听、思、记的关系

初二学生一般不会合理记笔记,通常老师黑板上写什么就抄什么,往往用记代替听和思,有的笔记虽然记得很全,但成绩不见提高。因此记笔记要掌握记录时机,应记要点、记疑问、记解题方法和思路,还要记小结、记课后思考题。

4、学会听课

在课堂上,我们有些同学不会听课,上课时老师在上面讲,他就在下面记,老师讲完了,他在下面记完了,老师讲到的内容一点也没听到。所以上课时要处理好听课和记笔记的关系。那么,听课听什么,怎么听?

首先听知识引入及知识形成过程,例如,我们在学习等腰三角形时,同学们知道等腰三角形的一条性质是“等边对等角”,我们是怎样推导这个性质的;其次听老师对重点、难点剖析(尤其是预习中的疑点);最后听例题解法的思路和数学思想方法。

初二物理参照物的解题技巧

进入初二孩子会接触到物理这一学科,其中就包括参照物的相关题型,很多孩子在面对这样的题目时往往不知所措,这说明孩子并没有掌握正确的做题方法,很多家长对此也是十分着急,那么初二物理参照物的解题技巧都有哪些呢?

初二物理参照物的解题技巧

1、参照物选取的原则

假定性:参照物一旦被选定,我们就假定该物体是静止的。

任意性:除研究对象以外的任何物体都可以被选作为参照物,如果以物体本身为参照物,则研究对象永远是静止的。

不唯一性:有时候参照物的选择不唯一,对于同一物体,由于选择的参照物不同,其运动状态也可能是不同的。

2、培养适合自己的物理学习方法

物理老师所说的学习方法一定要多次尝试,其他优秀学生的学习方法都可以借鉴,但是最终一定要形成一套符合自身情况的行之有效的方法,并且还能随时根据自身情况更新迭代!

3、认真听讲

天才不是天生的。无论是新课、实验课,还是习题课、复习课,每一个“考试状元”都能充分利用课堂时间,聚精会神听讲,紧跟老师思路,积极思考,不时勾画出重点,标注仍不清楚的,或者记录又产生的新疑问,这样的学习才是高效的。

4、及时纠正错题

做错题是经常发生的事,从纠正错误入手也是提高学习成绩的好途径,建立一个专用的本子。每次作业或考试出现错误,在专用的本子上将题目抄下。之后分析错误原因,再把错题整理一遍,将错误的类型汇总,看一看哪部分错的最多的,哪种错误原因最为常见。

5、预习教材

预习时,最好边看边思考,思考相关公式、定理是怎么推导的、是怎么得出结论的,也可以动笔做一些课后练习题。对于自己不懂的地方,可以做好记录,上课时带着问题去听老师讲课,针对性提问,这样可以提高听课效果。

6、重视观察和实验

科学是一门以观察、实验为基础的学科,观察和实验是科学学的重要研究方法。对于初学物理的学生,尤其要重视对现象的仔细观察。因为只有通过对观象的察看,才干对所学的物理知识有活泼、形象的感性认识;只有通过细心、认真的察看,才干使我们对所学知识的理解不断深化。

初二上学期几何题解题技巧

在初二阶段,孩子就已经接触到了几何题目,这不仅需要孩子有十分强的空间想象力,还要掌握正确的解题技巧和思路,这样才能够巩固基础知识,在考试中面对问题也会更加游刃有余,那么初二上学期几何题解题技巧都有哪些呢?

初二上学期几何题解题技巧

1、处理信息的工具

对于解几何题来说,这样的工具主要是课本上的概念、定理等知识点。另外,我们可以在网上或资料中找到各种各样所谓的几何经典模型,比如手拉手模型、对称全等模型等等。它们就像电脑的快捷键,快是快,但学起来也需要花费不小的时间和精力。

2、掌握基础知识

对于书本上的基础知识,一定要掌握得十分透彻,这是解题的依据和基础,只有熟练掌握了,才能解决更苦难的题目。上课一定要认真听老师的讲解,尤其是解题步骤,这个是最好的捷径,然后多加模仿,为己所用。

3、多练习

在学习过程中,要善于把知识和实践结合起来,并运用到实践中去,只有这样才能发现学习中的不足,弥补学习中的缺憾。解题所占的时间应不少于整个数学学习时间的70%。在解题的过程中,需要在掌握基础知识和例题的解题步骤、技巧的基础上进行,也就是掌握了工具再做。

4、学会及时总结

培养逻辑能力,简单的说就是看到一个问题知道如何解决的能力。比如看到一道应用题,你需要考虑是用数形结合方法做?还是利用设方程思想去做?选择好了方法之后,你需要知道该方法的流程是什么。

5、课前预习课后复习

初二上学期学生养成良好的学习习惯非常重要,有很多初中生上课都容易出现走神的现象,学生可以在课前提前对要学习的新课内容进行一定的预习,不仅能对将要学习的新内容有一定的了解,而且还能够增强学生的学习兴趣,上课更集中注意力的听老师讲课。

6、要富于想象

有的问题既要凭借图形,又要进行抽象思维。比如,几何中的“点”没有大小,只有位置。现实生活中的点和实际画出来的点就有大小。所以说,几何中的“点”只存在于大脑思维中。“直线”也是如此,直线可以无限延伸,但是直线也只存在于人们的大脑思维中。

高一数学函数解题技巧

随着学习的深入,进入高中的孩子面对的数学函数也越来越难,如果没有好的技巧去做题,可能一道函数题能浪费你15分钟时间,这在考试过程中是及其浪费时间的表现。那么高一数学函数解题技巧有哪些呢?

高一数学函数解题技巧

1、代入法

代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。

2、求函数的值域

配方法:求二次函数值域最基本的方法之一。例求函数y=x2-2x+5,x属于[-1,2]的值域。这道题的最好方法是用配方法,通过完全平方公式配成y=(x-1)2+4,然后根据定义域求最值。

3、判别式法

若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

如何提高高一数学成绩

1、注意和初中数学知识的衔接

这是一个十分困难的问题,初中数学与高中数学的差别非常大,从原本的实际思维转入抽象思维,需要一个大幅度转变。这就需要重新整理初中数学知识,形成良好的知识基础,在此基础上,再根据高中知识特点,较快的吸收新的知识,形成新的知识结构。

2、高一尽快进行角色转变

初中数学知识和高一数学相比比较浅显,更容易掌握,学生们可以通过反复练习,轻松的提高数学成绩。所以往往在数学的学习上很被动。

但是高中数学的理论性,抽象性都很强,需要高一学生在知识理解的基础上下功夫,要能举一反三,更要求学生能够主动去学习。所以刚进入高一的学生,需要尽快进行角色转变,适应高中的生活。

3、读好课本,学会研究

同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用

初中数学二次函数解题技巧

二次函数作为初中学习的重中之重,几乎是中考的必考题,因此学好它对于孩子把握住这一部分的分数是十分关键的,但是函数的变化总是让孩子们摸不着头脑,在解题时抓不着关键所在,那么初中数学二次函数解题技巧都有哪些呢?

初中数学二次函数解题技巧

1、利用坐标系,建立数形结合意识

从近几年各地中考二次函数综合题来看,大部分都是与坐标系有关的,它的特点是建立点与坐标之间的对应关系。我们可以用代数方法研究几何图形的性质;还可以借助几何图形直观得到某些代数问题的答案。

2、补形、割形法

几何图形中常见的处理方式有分割、 补形等,此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形。

3、代数推理

众所周知,二次函数的函数式是y = ax2 + bx + c,观察其函数式非常的简单,而与其对应的抛物线图像却比较容易发生变形,因此,在解决二次函数问题的过程中,其函数式会得到非常广泛的应用。应该学会利用二次函数与方程根之间具有的关系,写出它的顶点式。

4、特殊值法

根据题设和各选项的具体情况和特点,选取满足条件的特殊数值、特殊的集合、特殊的点、特殊的图形或者特殊的位置状态,代替题设普遍条件,把一般形式变成特殊形式进行求解,往往非常简单得出特殊结论,对各个选项进行检验,从而得到正确的判断的方法称为特例法。

5、二次函数图像与性质

二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

6、平移

二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

7、关注函数模型解题

在利用数学解答实际问题的教学中,我们在进行行之有效的训练,并掌握各种类型问题的基础上,应及时总结应用问题与数学问题的联系,归纳其归属哪类问题。可以通过与生活的结合,让学生充分领会到函数在实践中的作用,就能激发学生的学习兴趣,对以后的数学学习会有一个好的导向。

初二完形填空解题技巧

初一的时候考虑到孩子们刚刚进入初中,因此课程题目往往比较的简单,但是到来初二之后,课程的难度和数量都会明显的提高,英语作为孩子学习的重点,应当给予比较高的重视,其中完形填空是让很多孩子头疼的一题,那么初二完形填空解题技巧都有哪些呢?

初二完形填空解题技巧

1、通读短文、了解大意

解题时先跳过空格,通读初二英语完形填空的短文,了解全篇的内容和要旨。要重视首句,善于以首句的时态、语气为立足点,理清文脉,推测全文主题及大意。

2、平行原则的运用

完形填空文章很多时候是围绕一个话题展开,每个段落有的时候发展模式都是差不多的,前面提到如果首句设空,除了关注到后面的例子,还不妨可以关注下一段首句或者再下下段首句,类似的如果某段末句设空不妨也可以关注一下下面一段的末句。

3、判断逻辑与词义

照顾上下文,作出正确的逻辑及词义的判断,在答题过程中不要一遇到空白处就停下来做题,有些空白处是需要通读全文甚至全文后才能做出正确的选择,因此,在答题过程中要经常考虑上下文并进行逻辑推断。

4、先易后难

先做简单后做难,并且逐空试填。做题时,一定要遵循先易后难的原则,先确定自己把握的、比较明显的答案选项,让其提供一部分新的信息,为解答其余题目做铺垫。在此基础上,再读文章,好好利用已经选出的正确答案,认真考虑原来还不是太理解的句子,推断出比较难选的答案。

5、注意习惯搭配

有的题目可以根据自己掌握的语法知识来分析和判断,但语言上也有很多东西都习惯使然,所以解题时也应从固定搭配习惯用语西方文化习俗等方面来考虑。

6、复查核对,决定取舍

通读全文,检查还原了的原文是否完整、合理。其方法是:把短文连同所选答案细读一遍,凡读起来别扭或答案无确切把握的地方分别记下来,然后将每个空白处与其相对应的四个答案逐一对照,务求一一过关,避免遗漏。若发现原所选答案与复查时所选答案不同,不要急于涂改。

7、利用语法分析来解题

学生不仅需要理解上下文之间的逻辑关系,还需要根据特殊的语法结构进行分析,从句式特点、短文空格以及语法结构上进行分析,这样就可以知道句子成分的。如果选择动词时,就应该注意动词谓语动词以及语态等等。借助语法进行指导习题,是当前使用最有效的解题方法之一。

初二数学几何解题技巧

如果说初一是为了让孩子从完成从小学到初中身份的转变,那么初二就要求孩子认认真真的学习文化课知识,这个时候正是为初三突击复习打基础的时候,数学作为学习中的重点,需要认真对待,但是数学中的几何题经常让孩子摸不着头脑,那么初二数学几何解题技巧都有哪些呢?

初二数学几何解题技巧

1、逆向思维

顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可。

2、学会标注

把题目中所给的数,角度等标在图上,根据自己的所学知识将你还能标出的数,角度标在图上,不管这道题用不用得到都标上,这样在解题过程中会减少因为粗心大意丢失条件的情况,让证明过程更加有条理。

3、巩固基础

对于书本上的基础知识,一定要掌握得十分透彻,这是解题的依据和基础,只有熟练掌握了,才能解决更困难的题目。一定要认真听老师的讲解,尤其是解题步骤,这个是最好的捷径,然后多加模仿,为己所用。

4、添加辅助线

在初中几何题中,尤其是较难的几何证明题中,最重要的就是辅助线的增加,一条正确的辅助线可以让做题的思路豁然开朗。原本题目中的几何图形上没有这条线,但可能问题比较复杂。学生在分析题目的过程中可以尝试在图形上的某处增加一条辅助线,从而增加题设条件。

5、读懂引申条件

一些稍微难的题目会把条件隐藏起来,所以我们在阅读的时候能第一步把引申条件理解出来是最好的,这就需要对知识点的牢记。比如在阅读题目给的条件时候,就能联想到这些条件在哪些定律里面是出现过的。

6、熟记定理

熟记并理解三角形的概念、分类、性质以及三角形全等的判定,学会在复杂的图形中分离出表示某个几何概念的那部分图形,熟练并灵活地运用上述知识进行计算、说理以及解决问题。

7、掌握模型

要解题就需要从整体上来看条件,这就是结构,也叫做模型。所以要拿下初中几何难题,就必须掌握这些模型。在一定的意义上,掌握一个模型,就等于拥有了一把打开难题之门的钥匙。